Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 31.
Article in English | MEDLINE | ID: covidwho-1667269

ABSTRACT

In the latest few decades, molecular docking has imposed itself as one of the most used approaches for computational drug discovery. Several docking benchmarks have been published, comparing the performance of different algorithms in respect to a molecular target of interest, usually evaluating their ability in reproducing the experimental data, which, in most cases, comes from X-ray structures. In this study, we elucidated the variation of the performance of three docking algorithms, namely GOLD, Glide, and PLANTS, in replicating the coordinates of the crystallographic ligands of SARS-CoV-2 main protease (Mpro). Through the comparison of the data coming from docking experiments and the values derived from the calculation of the solvent exposure of the crystallographic ligands, we highlighted the importance of this last variable for docking performance. Indeed, we underlined how an increase in the percentage of the ligand surface exposed to the solvent in a crystallographic complex makes it harder for the docking algorithms to reproduce its conformation. We further validated our hypothesis through molecular dynamics simulations, showing that the less stable protein-ligand complexes (in terms of root-mean-square deviation and root-mean-square fluctuation) tend to be derived from the cases in which the solvent exposure of the ligand in the starting system is higher.

2.
ChemMedChem ; 16(13): 2075-2081, 2021 07 06.
Article in English | MEDLINE | ID: covidwho-1384144

ABSTRACT

Computational approaches supporting the early characterization of fragment molecular recognition mechanism represent a valuable complement to more expansive and low-throughput experimental techniques. In this retrospective study, we have investigated the geometric accuracy with which high-throughput supervised molecular dynamics simulations (HT-SuMD) can anticipate the experimental bound state for a set of 23 fragments targeting the SARS-CoV-2 main protease. Despite the encouraging results herein reported, in line with those previously described for other MD-based posing approaches, a high number of incorrect binding modes still complicate HT-SuMD routine application. To overcome this limitation, fragment pose stability has been investigated and integrated as part of our in-silico pipeline, allowing us to prioritize only the more reliable predictions.


Subject(s)
Molecular Dynamics Simulation , Protease Inhibitors/chemistry , SARS-CoV-2/metabolism , Viral Matrix Proteins/chemistry , Binding Sites , COVID-19/pathology , COVID-19/virology , Databases, Protein , Humans , Ligands , Protease Inhibitors/metabolism , Retrospective Studies , SARS-CoV-2/isolation & purification , Viral Matrix Proteins/metabolism
3.
J Enzyme Inhib Med Chem ; 36(1): 1646-1650, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1320278

ABSTRACT

The chemical structure of PF-07321332, the first orally available Covid-19 clinical candidate, has recently been revealed by Pfizer. No information has been provided about the interaction pattern between PF-07321332 and its biomolecular counterpart, the SARS-CoV-2 main protease (Mpro). In the present work, we exploited Supervised Molecular Dynamics (SuMD) simulations to elucidate the key features that characterise the interaction between this drug candidate and the protease, emphasising similarities and differences with other structurally related inhibitors such as Boceprevir and PF-07304814. The structural insights provided by SuMD will hopefully be able to inspire the rational discovery of other potent and selective protease inhibitors.


Subject(s)
Antiviral Agents/chemistry , Lactams/chemistry , Leucine/chemistry , Molecular Dynamics Simulation , Nitriles/chemistry , Proline/chemistry , Protease Inhibitors/chemistry , Antiviral Agents/pharmacology , Humans , Lactams/pharmacology , Leucine/pharmacology , Ligands , Nitriles/pharmacology , Peptide Hydrolases/metabolism , Proline/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Software
4.
ChemMedChem ; 16(13):1996-1996, 2021.
Article in English | Wiley | ID: covidwho-1300378

ABSTRACT

The Front Cover summarizes the computational pipeline which characterises HT-SuMD, a computational protocol exploiting supervised molecular dynamics simulations to perform the posing of a small fragment library. In this study, HT-SuMD accuracy in anticipating the fragment-bound conformations has been validated using a dataset of 23 noncovalent complexes, recently identified through an X-ray crystallographic fragment screening against the SARS-CoV-2 main protease(Mpro). More information can be found in the Communication by Mattia Sturlese, Stefano Moro et al.

5.
Sci Rep ; 10(1): 20927, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-954796

ABSTRACT

Coronavirus SARS-CoV-2 is a recently discovered single-stranded RNA betacoronavirus, responsible for a severe respiratory disease known as coronavirus disease 2019, which is rapidly spreading. Chinese health authorities, as a response to the lack of an effective therapeutic strategy, started to investigate the use of lopinavir and ritonavir, previously optimized for the treatment and prevention of HIV/AIDS viral infection. Despite the clinical use of these two drugs, no information regarding their possible mechanism of action at the molecular level is still known for SARS-CoV-2. Very recently, the crystallographic structure of the SARS-CoV-2 main protease (Mpro), also known as C30 Endopeptidase, was published. Starting from this essential structural information, in the present work we have exploited supervised molecular dynamics, an emerging computational technique that allows investigating at an atomic level the recognition process of a ligand from its unbound to the final bound state. In this research, we provided molecular insight on the whole recognition pathway of Lopinavir, Ritonavir, and Nelfinavir, three potential C30 Endopeptidase inhibitors, with the last one taken into consideration due to the promising in-vitro activity shown against the structurally related SARS-CoV protease.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Lopinavir/pharmacology , Nelfinavir/pharmacology , Protease Inhibitors/pharmacology , Ritonavir/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Drug Combinations , Drug Discovery , Drug Repositioning , Humans , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL